Research Article

Synthesis of *N*-(2,3-dihydro-1-[¹⁴C]methyl-2oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)benzamide and *N*-(2,3-dihydro-1-[¹⁴C]methyl-2-oxo-5-phenyl-1H-1, 4-benzodiazepin-3-yl)-*N*-[¹⁴C]methylbenzamide as novel carbon-14 labelled CCK antagonists

Hojatollah Matloubi $^{1,\ast},$ Ali Khalaj 2, Reza Dowlatabadi 2,† and Gholamhossein Shirvani 1

¹Nuclear Research Center/AEOI, Chemical Division PO Box 11365-8486, Tehran, Iran ²Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Science, Tehran. Iran

Summary

Two benzodiazepine CCK antagonists N-(2,3-dihydro-1-[¹⁴C]methyl-2-oxo-5phenyl-1H 1,4-benzodiazepin-3-yl)-benzamide **2** and N-(2,3-dihydro-1-[¹⁴C]methyl-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-[¹⁴C]methyl-benzamide **3** were synthesized in high yields through the reaction of N-(2,3-dihydro-2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl)-benzamide **1** with [¹⁴C] methyl iodide in different situations. Copyright © 2002 John Wiley & Sons, Ltd.

Key Words: cholecystokinin antagonists; benzodiazepine; carbon-14; methylations

Copyright © 2002 John Wiley & Sons, Ltd.

Received 3 September 2001 Revised 14 November 2001 Accepted 21 November 2001

^{*}Correspondence to: H. Matloubi, Nuclear Research Center/AEOI, Chemical Division, PO Box 11365-8486, Tehran, Iran. E-mail: hmatloubi@seai.neda.net.ir [†]A part of Ph.D thesis.

Introduction and discussion

Dealkylation and 3-hydroxylation are the most important metabolic routes for several 1,4-benzodiazepine derivatives.¹ Isotopic substitution at the site of metabolic transformation is one of the best methods for elucidating the mechanism of the metabolic process and several carbon-14 labelled benzodiazepine derivatives have been synthesized and their metabolic fates studied in human and animal models.^{1–6} Since the isolation of the non-peptidal cholecystokinin (CCK) antagonist Asperlicin,⁷ the 1,4-benzodiazepine ring system has served as a useful tool for delineating the pharmacologic action of CCK.

In order to study the rate of 1-dealkylation of benzodiazepine CCK antagonists and its influence on the pharmacologic profile of these compounds it became necessary to synthesize a CCK antagonist derivate labelled with carbon-14 at the N-1 position. Furthermore in order to determine the rate of chain *N*-methyl dealkylation, synthesis of a ligand, *N*-methylated both in N-1 and the amide chain appeared of interest.

The ¹⁴C labelling step in synthesis of **2** and **3** consists of methylation of **1** with [¹⁴C] methyl iodide, prepared by the known methods^{8,9} from barium [¹⁴C] carbonate via [¹⁴C] methanol. The benzodiazepine CCK antagonist **1** was prepared through a benzotriazole-assisted synthetic route from benzamide and 2-aminobenzophenone.¹⁰

By utilization of molar equivalents of 1 and $[^{14}C]$ methyl iodide and a short reaction time, the mono methylated product 2 in which only the N-1 of the benzodiazepine ring is methylated, is obtained. Using $[^{14}C]$ methyl iodide in excess and extending the reaction time yields the dimethyl derivative 3.

Both compounds 2 and 3 were synthesized for the first time and their structures were determined by IR, MS, ¹H NMR and ¹³C NMR spectroscopy.

Biological studies on these compounds are currently under investigation.

Reaction Time: 5min. 2 $R_1 = {}^{14}CH_3$, $R_2 = H$ 45min. 3 $R_1 = R_2 = {}^{14}CH_3$

Copyright © 2002 John Wiley & Sons, Ltd.

J Label Compd Radiopharm 2002; 45: 347-350

Experimental

Radioactivity determinations were carried out with a liquid scintillation counter (Beckman LS 6500) using an internal standard method. Thin layer chromatography (TLC) analyses were carried out on silica gel coated foils (Schleicher & Schull) and the spots visualized under UV (254 nm). Melting points were determined on a Reichert hot plate apparatus and are uncorrected. ¹H NMR and ¹³C NMR were recorded on a Varian Unity Plus 400 spectrometer (399.866 MHz for ¹H NMR and 100.556 MHz for ¹³C NMR). Mass spectra were obtained on a Finnigan TSQ-70 instrument. Infrared spectra were recorded on a Nicolet Magna IR 550 spectrometer.

 $[{}^{14}C]$ Methanol. According to a modification of the method of Cox et al.⁸ [${}^{14}C$] carbon dioxide generated from [${}^{14}C$] barium carbonate (15.4 mCi, 0.197 g, 1 mmol) was introduced into a suspension of lithium aluminium hydride (0.16 g, 4.2 mmol) in tetrahydrofurfuryloxy-tetrahydropyran (7 ml) and the mixture stirred for 1 h at room temperature. Addition of tetrahydrofurfuryl alcohol (3.5 ml) and heating the system at 110°C with passing a slow stream of nitrogen into the reaction mixture gave [${}^{14}C$] methanol (14 mCi, 29.2 mg, 0.91 mmol). The latter was stored in dry ice.

 $[^{14}C]$ Methyl iodide. A solution of $[^{14}C]$ methanol (14 mCi, 29.2 mg, 0.91 mmol) in 55% hydrogen iodide (4 ml) was heated at 40–90°C for 30 min. Distillation of the reaction mixture by passing a slow nitrogen stream and redistillation of the distillate on a vacuum line gave $[^{14}C]$ methyl iodide (13.8 mCi, 28.8 mg, 0.9 mmol).

N-(2,3-*Dihydro-1-[*¹⁴*C*]*methyl-2-oxo-5-phenyl-1-H1,4-Benzodiazepin-*3-yl)-benzamide 2. Fresh sodium hydride (60% dispersion in mineral oil, 40 mg, 1 mmol) was added to a solution of **1** (355 mg, 1 mmol) in anhydrous DMF (4 ml) at 0°C under a nitrogen atmosphere. After 5 min [¹⁴C] methyl iodide (15.3 mCi, 31.9 mg, 1 mmol) was added via a micropipette and the reaction mixture stirred for 5 min. The reaction mixture was then added to a vigorously stirred solution of water (25 ml) containing aqueous sodium hydrogen sulfate (0.5 ml, 1 N).

The reaction slurry was filtered after 5 min and washed with water, ether and cold methanol and dried under high vacuum. Recrystalization from ethylacetate/*n*-hexan (6:4) gave pure **2** (12 mCi, 295 mg, 0.8 mmol), m.p. 242°C, ¹H NMR (δ , CDCl₃):3.51 (s, 3H, methyl), 5.71 (d, 1H, J=8 Hz, CH), 7.38–7.63 (m, 12H, aromatics), 7.95 (d, 2H, J=8 Hz, aromatics), 8.03 (d, 1H, J=8 Hz, amide NH) ppm; ¹³C NMR

(δ , CDCl₃): 35.37, 67.58, 121.51, 124.55, 127.36, 128.22, 128.52, 129.13, 129.83, 130.67, 130.77, 131.76, 131.87, 134.00, 138.09, 142.80, 166.93, 167.41, 167.83; IR (KBr): v = 691.9, 778.9, 1516.4, 1644.4, 1690.5, 3052.6, 3277.9; mass: m/z = 369.

 $N-(2,3-dihydro-1-[{}^{14}C]methyl-2-oxo-5-phenyl-1-H1,4-Benzodiazepin 3-yl)-N-[{}^{14}C]methyl-benzamide 3. Fresh sodium hydride (60% disper$ sion in mineral oil, 80 mg, 2 mmol) was added to a solution of 1 (355 mg,1 mmol) in anhydrous DMF (4 ml) at 0°C under a nitrogen atmosphere. $After 45 min [{}^{14}C] methyl iodide (30.6 mCi, 63.8 mg, 2 mmol) was added$ via a micropipette and the reaction mixture stirred for 45 min. Thereaction mixture was then added to a vigorously stirred solution ofwater (25 ml) containing aqueous sodium hydrogen sulfate (0.5 ml, 1 N).

The reaction slurry was filtered after 5 min and washed with water, ether and cold methanol and dried under high vacuum. Recrystallization from ethylacetate/*n*-hexan (1:9) gave pure **3** (21.4 mCi, 268 mg, 0.7 mmol), m.p. 179°C, ¹H NMR (δ , CDCl₃): 3.45 (s, 3H, methyl), 3.47(s, 3H, methyl), 6.18 (s, 1H, CH), 7.42-7.60 (m, 12H, aromatics), 7.70 (d, 2H, *J*=8 Hz, aromatics) ppm; ¹³C NMR (δ , CDCl₃): 35.03, 35.35, 72.14, 121.73, 124.05, 127.21, 127.30, 128.24, 128.96, 129.59, 129.75, 130.22, 130.64, 131.83, 136.58, 138.26, 143.26, 166.61, 168.69, 172.56; IR (KBr): *v*=687.4, 1081.1, 1357.4, 1450.3, 1624.8, 1685.5, 2921.2, 3267.9; mass: *m*/*z*=383.

References

- 1. Maksay G, Tegyey Z, Otvos L. J Chem Soc Perkin Trans 1988; 11: 57.
- 2. Hsu RSP, Stolle WT. J Labelled Cpd Radiopharm 1981; 18: 881.
- 3. Tegyey Z, Maksay G, Otvos L. J Labelled Cpd Radiopharm 1979; 16: 377.
- 4. Nakatsuka I, Kawahara K, Kamada T, Shono F, Yoshitake A. *J Labelled Cpd Radiopharm* 1977; **13**: 453.
- 5. Gottschalk LA, Merlis S. *Pharmacokinetics of Psychoactive Drugs*, Spectrum Publication, Inc.: New York, 1976; 45–60.
- 6. Kaegi HH, Burger W, Bader GJ. J Labelled Cpd Radiopharm 1982; 19: 289.
- Chang RSL, Lotti VJ, Monaghan RL, Birnbaum J, Stepley EO, Goetz MA, Albers-Schonberg G, Patcett AA, Liesch JM, Hensens OO, Springer JP. Science 1985; 230: 177.
- 8. Cox JD, Turner HS. J Chem Soc 1950; 3167.
- 9. Ronzio AR, Murray A. J Am Chem Soc 1952; 74: 2408.
- Khalaj A, Pirali M, Matloubi H, Dowlatabadi R. Monatsh Chem 2001; 132: 747.